Month: November 2017

Scotland’s innovative renewable projects

Scotland’s innovative renewable projects

Scotland is on track to meet its target of 100% of electricity generation from renewable sources by 2020. Since the turn of the century we have gone from producing 10% of electricity from renewables to 60%. We hit our emissions reducing target five years earlier than anticipated and look set to preserve that momentum going forward.

Our transition to renewable energy has been made without any negative impact on the country’s finances demonstrating that there is no need to choose between ecological and economic considerations.

Wind power has played major role in this success with both onshore and offshore developments contributing significantly. Solar has also added its share although not to the same level as wind, as any resident will tell you, it is much more windy than it is sunny here.

It is not only these two major components which are providing clean electricity as more and more innovative ideas and projects are being realised throughout the country. With the reduction of new onshore wind and solar developments to almost zero over the past year it is these new type developments which will keep us on track for hitting and maintaining our targets.

For example in Glenrothes, Fife councillors have granted planning permission for a vast network of underground pipes to be installed throughout the town as part of the Glenrothes District Heating Scheme.

Although the councillors were concerned regarding the extent of pipe laying required committee members were reassured the pipework generally followed the route of roads and unless absolutely necessary would avoid existing utilities and greenspaces with all excavated land being replaced as it is.

The £17million project is being organised by the local council in conjunction with energy company RWE and the Scottish Government with the aim to provide low-carbon heat to both residential and business premises. It will use heat capacity from the local biomass plant and transport it initially to the council’ Fife and Rothesay House. A further 327 homes have been identified as potential beneficiaries as has Rothes Hall, a local library, a social club, a church and a number of shops.

Another example is a pioneering Scottish Government funded trial currently taking place in Aberdeenshire into the use of hydrogen technology to reduce and hopefully eliminate carbon emissions from tractors and other farm vehicles.

A number of farmers are taking part in the trial including David Barron who will using the hydrogen electrolyser technology on his JCB loader tractor. The special hydrolyser has been retrofitted and although it will not replace the vehicles diesel use it will reduce it significantly meaning a reduction in its carbon emission output.

The unit puts an electric current through distilled water to create oxy-hydrogen which is then put through the engine helping to keep it extremely clean. As well as reducing carbon emissions the hydrolyser unit reduced the machine’s fuel consumption by approximately three litres per hour.

Based on a fuel cost of 50p a litre, this equates to a saving of £1.50 an hour and a potential annual saving of £1,500 if the machine is used for 1,000 hours during the year.

Phil Davies, of Water Fuel Engineering Ltd, which fitted the hydrolyser to the loader, said Mr Barron’s JCB was the first agricultural machine in the UK to be fitted with this new technology. He said: “What we have created is an electrolyser which produces oxy-hydrogen on board and on demand.

“We have turned a standard diesel vehicle into a hybrid to clean up the emissions – it takes out about 80% of the emissions.”

He said the company was confident that the technology would be mass produced and commercially available to farmers, at an affordable price, from 2019.

“We are really excited because in the past five to 10 years the government has made a lot of noise about emissions in cities, but in rural areas it’s more significant. What perhaps we will need to be thinking about is how heavy industrial traffic could actually contribute to cleaner air. There’s a danger sometimes that we might take clean air for granted.”

Alan Bruce, of SAC Consulting’s office in Turriff, oversees Nether Aden’s involvement in the government project. He confirmed improved efficiency and reduced carbon emissions went hand in hand.

Mr Barron’s farm is one of nine taking part in the Scottish Government’s Farming for a Better Climate initiative which helps farmers find ways to make their businesses more profitable and efficient, while in turn reducing their carbon footprint.

As well as installing the hydrolyser on his JCB, Mr Barron has discussed a wide range of issues with fellow farmers attending meetings at Nether Aden as part of the Farming for a Better Climate initiative. In addition, Mr Barron has enrolled Nether Aden in the government’s Agri-Environment and Climate Change Scheme and green manure has been incorporated into cropping plans as part of this.

Over the coming years there will be many more creative ideas and inventive projects launched to utilise our renewable sources and continue to reduce our carbon emissions. However small they may seem they all add up and contribute significantly to us meeting our renewable energy generation and carbon emission reductions.

Whilst wind and solar are incredibly important for us is achieving these it is the combined contribution of the small projects that will take us over the line and keep us there.


The Balancing Act

The Balancing Act

A new study from battery developers Eaton in partnership with the Renewable Energy Association (REA) and Bloomberg New Energy Finance shows that the cost of generating energy from wind and solar in the UK is expected to halve by 2040 which in turn is expected to lead to more opportunities for energy storage.

The study confirmed that the intermittency of wind and solar energy generation will create extremely varied outputs. This is likely to produce periods when output exceeds demand and also when demand outstrips generation levels.

The study does state that while battery storage is a viable solution to short-term volatility issues it is not well suited to providing long term back-up of weeks or months. To meet these longer-term gaps hydro, interconnectors and gas generation are the only solutions that can ease flexibility economically. Other technologies such as hydrogen storage would require significant cost reductions by 2040.

Speaking at the launch of the study report BNEF’s head of global analysis Albert Cheung said: “This study highlights a seismic shift in how power systems will operate in future. As wind and solar become the cheapest options for power generation, the race is on to develop and deploy the flexible resources that will complement them.”

This new study follows on from the BNEF New Energy Outlook report published in June which stated that renewable energy generation will account for approximately 75% of the projected $10 trillion of global investment in energy technologies by 2040.

The expected back-up capacity is expected to remain relatively flat up to 2040 with current levels being approximately 70GW. This could be balanced via dispatchable resources, generation, storage, flexibility and interconnectors. In the highest output months, the UK could source 70% of its needs from wind and solar and some associations claim that bioenergy could be used to provide the remaining baseload.

Another solution could be found in the Nordic countries where a larger percentage of the energy generation and storage is produced and maintained via hydro-power. While the Nordic countries are expected to produce 67% of their energy in generated by hydro by 2040 the figure in the UK is currently projected to be much lower leading to claims that more hydro generation and hydro storage options are required.

“Massive increases in future renewable power generation mean that industry and government must start planning now to ensure low-carbon, cost-effective ways of balancing demand and supply,” the REA’s chief executive Dr Nina Skorupska said.

“We believe that there is a role for fuelled renewable technologies such as bioenergy and energy from waste to provide the complementary baseload generation that will be required, to avoid the need for carbon intensive generation at all.”

Analysis from the Carbon Trust suggests that energy storage could contribute £2.4bn to UK electricity system savings by 2030, but only if a range of ‘necessary regulatory reforms’ are introduced to steady the UK’s energy market.

“These solutions could include continued promotion of smart metering, reforms to increase market openness and transparency for all grid ancillary services and long-term grid service contracts and pricing schemes. We will also analyse the benefits of various policy options for the future of the energy market that include storage,” Eaton’s distributed energy segment manager Louis Shaffer said.

Energy storage is fast becoming one of the hottest topics in generation circles. As countries continue to increase their renewable output viable storage solutions become equally important As with energy generation successful storage will require a mix of different technologies to cater for different situations.   Battery storage will certainly work on a local short-term level. However large scale nationwide supply will require more suitable technologies.

Pump Storage Hydro is considered to be one of the most advanced largest capacity form of grid energy storage that currently exists. This proven technology can help reduce renewable energy curtailment and therefore promote grid stability. For example ILI Group is currently working on three potential large scale developments in Scotland which combined could export over 1.2GW of energy to the grid.

Renewable energy is the answer to clean, safe energy generation. Renewable energy storage will help us overcome intermittency issues and guarantee that whatever the weather we will have a continuous flow of clean energy.


A Perfect Match

A Perfect Match

Wind power was the toast of Scotland again in October as over the course of the month turbines throughout the country produced enough electricity for almost double the amount of homes.

1.7million megawatt hours of electricity were generated by Scottish wind turbines in October according to data collated by WeatherEnergy, enough to power 4.5 million homes with more than 100 per cent of the total domestic electricity requirement generated on 28 out of 31 days.

WeatherEnergy’s Karen Robinson said: “October was an extraordinary month and provides more evidence that greater investment in both renewables and storage is the way forward.”

Gina Hanrahan, acting head of policy at WWF Scotland, said: “No-one will be surprised that October proved to be a spectacular month for wind energy, with some high winds, including the tail end of Hurricane Ophelia.

“Fortunately our infrastructure coped well with the windy weather which provided enough to power nearly twice the number of households in Scotland and almost all of our electricity demand.

“Scotland’s renewable sector is thriving, but to have continued growth of clean, cheap power the UK Government needs to allow onshore wind and solar to compete for contracts on a level playing field.

“This is backed by everyone from the Scottish Government to the National Infrastructure Commission to Ofgem and, most importantly, the general public.

“Renewables, including onshore wind, are riding high in the polls with record levels of support. Consumers, the industry and the planet would all benefit from their continued deployment.”

Stephanie Conesa, policy manager at industry body Scottish Renewables, said: “Scotland is home to approximately 25 per cent of Europe’s offshore wind resource and we are now starting to build projects which will harness this potential.

“The Beatrice project in the Moray Firth is forging ahead, Statoil’s world-leading Hywind is now generating electricity and the contract awarded to the 950MW Moray East project by the UK Government in 2017 showed the impressive cost reductions which are possible in the sector.

“Scotland is also emerging as an international centre of offshore wind innovation. The 196 metre Levenmouth turbine in Fife is the world’s most advanced open access offshore wind turbine dedicated to research, while the European Offshore Wind Deployment Centre – an 11-turbine scheme off Aberdeen – is set to trial next-generation technology and boost the industry’s drive to produce competitive clean power.

“The economic impact of these projects is already being felt. Ports like Nigg and Wick and coastal towns, including Campbeltown and Stornoway, are seeing investment, development and jobs.

“Other parts of the supply chain, too, are developing apace, with companies such as Edinburgh’s Limpet Technologies developing innovative systems to protect the offshore wind workforce of the future.

“The Scottish Government has shown its ambition to generate the equivalent of half of all energy consumed from renewable sources by 2030 and offshore wind can play a key role in meeting that ambition, as well as the UK’s wider climate goals and our international commitments under the Paris Agreement.”

In other wind generation news the Crown Estate Scotland, who are responsible for leasing the seabed to developers, is to start discussions with the renewables industry and the government to prepare for potential new offshore wind farms.

The proposed new leasing will potentially see more sea bed used by developers to build commercial-scale (100MW+) floating and / or fixed offshore wind farms and follows figures released in September showing a sharp fall in the cost of offshore wind electricity.

John Robertson, senior development manager at Crown Estate Scotland said: “We have now started to consider if and how to issue new leasing rights for commercial-scale offshore wind projects.

“This will include speaking to local, Scottish and UK stakeholders in 2018 to understand their views on our proposed approach.

“The waters around Scotland have fantastic potential, particularly for developments in deeper waters.

“With costs being lowered and jobs created throughout the supply chain, new leasing has the potential to benefit communities, consumers and the climate.”

Scottish Government minister for business, innovation and energy, Paul Wheelhouse MSP, said: “The potential benefits of offshore wind energy are enormous, given Scotland’s very extensive maritime area and estimated 25% share of Europe’s wind energy potential.

“Investment in renewable energy, such as offshore wind, will not only stimulate economic growth, but can also help to lower electricity prices in the future and significantly reduce greenhouse gas emissions and, thereby, mitigate the impacts of climate change.

“We want to maximise the huge potential of this industry and its supply chain here, in Scotland, and so I welcome Crown Estate Scotland’s efforts to identify future licensing opportunities and look forward to working with CES as they manage Scotland’s marine assets directly on behalf of Scottish Ministers.”

UK Government energy minister, Richard Harrington, said: “The offshore wind sector in the UK has shown great ambition and is bringing forward clean energy projects that could power more than 3 million homes, at half the cost achieved in previous auctions.

“Our Clean Growth Strategy sets out that the UK could support another 10GW of offshore wind in the 2020s, with the opportunity for more if it’s cost effective. This announcement today is an important step towards these future projects.”

We have always stated that a diverse renewable energy mix is the best way to generate power and stand by that. However wind generation is very much the leader in Scotland. Its technologies are tested and reliable. Its costs are now below that of the non-renewable traditional generation methods and we have the resources. It is a perfect match.

So while it is not surprising to see it producing such quantities of electricity it is pleasing. With new storage methods coming online the ability to produce, store, and distribute renewable energy to suit the peaks and troughs of consumer demand is not far away.

And with that will come the realisation of 100% of the country’s electricity demand being met by renewables. Then we can start importing to other countries all the while reducing our reliance on carbon based energy and the harmful emissions it can produce.


Positives and Negatives for the UK Renewables Industry

Positives and Negatives for the UK Renewables Industry

New statistics released by the Department for Business, Energy and Industrial Strategy (BEIS) last week revealed an extensive  downturn in solar PV development in the UK.  In particular, the last two months shown, August and September, have seen just 13MW and 12MW installed respectively.

Since the closure of the Renewables Obligation for solar in March 2017 a similar level of new capacity has been added to the grid. In Q1 2017 it is estimated that 541 MW in capacity was added with Q2 and Q3 only deploying 77MW combined.

The government has committed to conduct a review of the feed-in tariff scheme before the end of this year, however resisted the chance to do so within its Clean Growth Strategy which largely ignored solar PV’s possible contribution to a cleaner power system.

However the stagnating solar deployment has been set against a backdrop of record renewables and low carbon generation in Q2 2017, indicating just how successful renewable energy has been at replacing legacy fossil fuel generators within the UK power mix.

BEIS revealed last week that a record 29.8% from renewable energies which was largely driven by soaring wind and PV generation.

James Court, head of policy and external affairs at the Renewable Energy Association, described the record as “another milestone” towards a more flexible energy system and said the success had been facilitated by the fall in costs of solar and wind.

“The government must address the policy barriers which have unnecessarily impeded their deployment over the last year and give the industry clarity around how the market will be structured in the 2020’s.

“We must now also replicate this progress within the heat and transport sectors. This means deploying renewable technologies which are able to utilise resources such as waste, bioenergy and low carbon power, coupled with smarter and more efficient housing. There is no single silver bullet.”

While solar stagnates heat pump technology continues to grow with new pioneering scheme to be developed in Clydebank. The development will use water pumped from the nearby River Clyde and will form part of the £250million Queen’s Quay regeneration project, the site chosen for the scheme has been the now disused John Brown’s shipyard.

Commenting on news that plans have been submitted Sarah Beattie-Smith, Senior Climate and Energy Policy Officer at WWF Scotland said: “Cutting our reliance on fossil fuels for heating our homes and buildings is the critical next stage in the journey to a zero carbon Scotland.  This exciting new project would apply technology already tried and tested by Scottish companies overseas.

“It’s fantastic to think that having played host to the industrial revolution the Clyde can now be the source of renewable heat, helping to stimulate Scotland’s part in the global low carbon industrial revolution.  With Scotland having no shortage of rivers or coastline near our towns and cities this technology could play an important role in helping us ensure half of all Scotland’s energy needs across heat, electricity and transport are met by renewables by 2030.”

Whilst renewable energy generation continues to produce high quantities of clean electricity heat generation is still highly carbon intensive. As heat generation accounts for half of all energy use it is therefore imperative to continue to develop technologies and launch projects in the renewable heat sector.

As more of these types are projects are launched we will see our reliance on carbon intensive heat technologies reduce much in the way we have seen renewable energy revolutionise electricity generation.

The answer will not be as simple as wind turbines or solar panels and the works involved may be more costly and initially on a smaller scale but in the long term the value is incalculable.

WordPress SEO