Wind energy save EU €2.4 billion worth of water a year

A report published last week by the European Wind Energy Association (EWEA) has highlighted the cost to the union of non-renewable forms of electricity generation.

The report, entitled ‘Saving Water with Wind Energy’, has revealed both the amount of water which is used for energy generation within the European Union each year and the amount of money which this costing taxpayers and consumers across the continent.

It should first be noted that wind energy generation is saving Europe around €2.4 billion every year. This figure represents the cost of the water which would have been incurred had the electricity generated from wind power had been generated in more traditional ways. This figure was for the year for 2012. Given the strides that wind power has made across Europe it can be concluded that this figure has risen since then and shall continue to do so.

Startlingly, 44% of the water used within the European Union is used in power generation. It should be noted that the vast majority of this 44% is used in traditional power plants. For example nuclear and coal plants which require vast amounts of water for cooling. Energy production is by far the biggest use of water within the European Union. In comparison agriculture only represents 34% of water demand, the public water supply only 21% and industry accounts for only 11%. In total 4.5 billion cubic meters of water are used by nuclear, coal and gas firing plants every year.

Given that demand for water is increasing due to population growth and density increase as well as pressures placed upon the environment by climate change water efficiency will become an increasingly important issue in the coming years. Already at least 11% of European Union citizens are affected by water scarcity – for example in the South East of England were droughts and hose-pipe bans are now an annual occurrence. Using huge amounts of water to produce electricity only exacerbates these issues.

Renewable forms of energy generation require far less water to operate than more traditional and large scale technologies. Nuclear power uses the most water to produce power; on average 2.7 cubic meters of water are needed to produce a single megawatt hour. Coal is slightly less intensive requiring 1.9 cubic meters of water for every megawatt hour and gas is further less intensive requiring 0.7 cubic meters per megawatt hour. However in comparison the amount of water required to produce a megawatt hour of wind power is minimal. Wind turbines only require water for infrequent blade cleanage and generator cooling.

Indeed the EWEA report estimated that usage of wind turbines in 2012 reduced the EU’s energy industry’s water usage by 1.2 billion cubic meters – the annual water usage of 4% of the EU’s population. Again these figures will have increased given the increase in wind capacity seen throughout the EU’s member states. 1.2 billion cubic meters saved represents €2.4 billion saved. Furthermore given the consensus existing among many economists that water is heavily undervalued the true savings could be far higher.

The EWEA’s head of policy analysis Ivan Pineda commented at the publication of the report:

“Water equivalent to over three Olympic size swimming pools is consumed every minute of every day of the year to cool Europe’s nuclear, coal and gas plants. Increasing our use of wind energy will help preserve this precious resource far more effectively than any ban on watering the garden– while saving us money”.

The report projected that by 2030 wind energy will save the EU between 4.3 and 6.4 billion cubic meters of water per year. This would represent a financial saving of between €11.8 and €17.4 billion per year. Given the expectation that water usage and efficiency will become an increasingly part of resource management governments across the European Union are being urged to factor such considerations into energy policy. Industry trade body RenewableUK’s Director of External Affairs Jennifer Webber commented:

“Water is a very precious resource – water restrictions were imposed in the UK in the summer of 2012 in areas hit by drought. One of the many benefits of wind energy is that it requires hardly any water to keep generating. This report is a timely reminder of the environmental impact of other technologies which use vast amounts of water for cooling. When Governments set energy policy, they should take this into account – it’s not just the carbon footprint that matters, but also the water swallowed up by these other thirsty generators”

In other news, this week SSE exported power from it’s offshore wind testing facility to the National Grid for the first time. The facility, sited on the North Ayrshire coast is the UK’s first, and currently only, onshore test site for offshore turbines. The site was established with support from both the UK Government’s Department of Energy and Climate Change and Scottish Enterprise.The Ayrshire site has similar wind conditions to those found offshore. The currently operational turbine is a 6MW Siemens 154 direct drive machine, some 177 meters high. Work has already begun to install the site’s second turbine; a 7MW Mitsubishi model. This is expected to be operational by the autumn.

The commencement of power exportation has been enthusiastically greeted. Clark MacFarlane, Managing Director, Siemens Wind Power Offshore UK&I said:

“We are delighted with the news of first power for our 6MW turbine at Hunterston. This is another important milestone for our next generation wind turbine technology. The SSE and Siemens team has worked extremely hard to get to this point and should feel proud of their achievement in delivering this important clean energy project.”

Ian Flannagan, SSE’s Project Construction Manager, said:

“It’s great to see the Siemens wind turbine generating electricity for the first time which is testament to the hard work and commitment shown by everyone involved in the project.

“We are busy preparing the site ahead of the second turbine, a Mitsubishi SeaAngel 7MW offshore wind model, arriving in a few months time.”

UK Energy and Climate Minister, Greg Barker said:

“SSE Renewable’s test site for offshore wind turbines is an exciting and innovative project. It will help the country take another step towards delivering £110 billion investment into our energy sector while helping to support local jobs.”

The success of the offshore turbine testing site is good news for the UK’s wind industry ensuring that it’s world leading position is maintained.

The report published by the EWEA serves to underline the many benefits which wind energy generation has; increasing both energy and water security, reducing CO2 emissions and combating climate change and helping to keep energy bills down by reducing reliance upon fossil fuel imports. We at Intelligent Land Investments (Renewable Energy) are proud to be doing our part to increase the UK’s wind energy generation capacity.

European Drought – Another Nuclear Disaster?

A drought in Europe this summer could expose the Nuclear Industry to yet more bad publicity following the disaster at Fukushima. The driest spring for a century has hit France particularly hard, leaving French agriculture facing a reduction of 11.5% from their average wheat harvest and could lead to blackouts across mainland Europe.

With water urgently needed by French farmers and river levels rapidly dropping the French nuclear power industry is preparing for a potential worst case scenario. France produces 75% of its electricity from nuclear power and traditionally exports some of this power across Europe. However if river levels drop further then many nuclear plants in France will no longer be able to cool their reactors, forcing them to reduce power output or even to shut down completely. Thomas Hondre, head of nuclear reactors at ASN (the French nuclear watchdog), commented that “we are in a drought situation that could prolong – and in case of a severe drought, if water levels go below set limits, power output has to be cut or completely stopped.” Indeed such situations have already come to pass; in the heat waves of 2003 and 2006.

The problem is further exacerbated by the dramatic change that German energy policy has undergone in recent months. 7 of the country’s nuclear power plants have been shut down this year and are not expected to go back online. Indeed, the German Chancellor Angela Merkel has announced that by 2022 Germany will have shut down all of its nuclear reactors. This shortfall was expected to be bridged in the short term by importation of French nuclear power.

The French energy grid is not just under pressure from possible nuclear shutdown and increased export demands. French hydro-electric plants are also rapidly coming under pressure from reduced water availability. It has been estimated that 2.1 terawatt-hours of hydro-electric power have been lost over the past three months due to increasingly low water levels. 20% of French power capacity is generated through hydro-electricity. French coal power is also under strain as further reductions in river levels could mean that it would become increasingly difficult to transport coal to the plants.

With the threat of blackouts across Europe beginning to become a possibility the Nuclear power industry claims of reliable, dependable, safe power look set to take a further battering. What are your thoughts?