Wind energy save EU €2.4 billion worth of water a year

A report published last week by the European Wind Energy Association (EWEA) has highlighted the cost to the union of non-renewable forms of electricity generation.

The report, entitled ‘Saving Water with Wind Energy’, has revealed both the amount of water which is used for energy generation within the European Union each year and the amount of money which this costing taxpayers and consumers across the continent.

It should first be noted that wind energy generation is saving Europe around €2.4 billion every year. This figure represents the cost of the water which would have been incurred had the electricity generated from wind power had been generated in more traditional ways. This figure was for the year for 2012. Given the strides that wind power has made across Europe it can be concluded that this figure has risen since then and shall continue to do so.

Startlingly, 44% of the water used within the European Union is used in power generation. It should be noted that the vast majority of this 44% is used in traditional power plants. For example nuclear and coal plants which require vast amounts of water for cooling. Energy production is by far the biggest use of water within the European Union. In comparison agriculture only represents 34% of water demand, the public water supply only 21% and industry accounts for only 11%. In total 4.5 billion cubic meters of water are used by nuclear, coal and gas firing plants every year.

Given that demand for water is increasing due to population growth and density increase as well as pressures placed upon the environment by climate change water efficiency will become an increasingly important issue in the coming years. Already at least 11% of European Union citizens are affected by water scarcity – for example in the South East of England were droughts and hose-pipe bans are now an annual occurrence. Using huge amounts of water to produce electricity only exacerbates these issues.

Renewable forms of energy generation require far less water to operate than more traditional and large scale technologies. Nuclear power uses the most water to produce power; on average 2.7 cubic meters of water are needed to produce a single megawatt hour. Coal is slightly less intensive requiring 1.9 cubic meters of water for every megawatt hour and gas is further less intensive requiring 0.7 cubic meters per megawatt hour. However in comparison the amount of water required to produce a megawatt hour of wind power is minimal. Wind turbines only require water for infrequent blade cleanage and generator cooling.

Indeed the EWEA report estimated that usage of wind turbines in 2012 reduced the EU’s energy industry’s water usage by 1.2 billion cubic meters – the annual water usage of 4% of the EU’s population. Again these figures will have increased given the increase in wind capacity seen throughout the EU’s member states. 1.2 billion cubic meters saved represents €2.4 billion saved. Furthermore given the consensus existing among many economists that water is heavily undervalued the true savings could be far higher.

The EWEA’s head of policy analysis Ivan Pineda commented at the publication of the report:

“Water equivalent to over three Olympic size swimming pools is consumed every minute of every day of the year to cool Europe’s nuclear, coal and gas plants. Increasing our use of wind energy will help preserve this precious resource far more effectively than any ban on watering the garden– while saving us money”.

The report projected that by 2030 wind energy will save the EU between 4.3 and 6.4 billion cubic meters of water per year. This would represent a financial saving of between €11.8 and €17.4 billion per year. Given the expectation that water usage and efficiency will become an increasingly part of resource management governments across the European Union are being urged to factor such considerations into energy policy. Industry trade body RenewableUK’s Director of External Affairs Jennifer Webber commented:

“Water is a very precious resource – water restrictions were imposed in the UK in the summer of 2012 in areas hit by drought. One of the many benefits of wind energy is that it requires hardly any water to keep generating. This report is a timely reminder of the environmental impact of other technologies which use vast amounts of water for cooling. When Governments set energy policy, they should take this into account – it’s not just the carbon footprint that matters, but also the water swallowed up by these other thirsty generators”

In other news, this week SSE exported power from it’s offshore wind testing facility to the National Grid for the first time. The facility, sited on the North Ayrshire coast is the UK’s first, and currently only, onshore test site for offshore turbines. The site was established with support from both the UK Government’s Department of Energy and Climate Change and Scottish Enterprise.The Ayrshire site has similar wind conditions to those found offshore. The currently operational turbine is a 6MW Siemens 154 direct drive machine, some 177 meters high. Work has already begun to install the site’s second turbine; a 7MW Mitsubishi model. This is expected to be operational by the autumn.

The commencement of power exportation has been enthusiastically greeted. Clark MacFarlane, Managing Director, Siemens Wind Power Offshore UK&I said:

“We are delighted with the news of first power for our 6MW turbine at Hunterston. This is another important milestone for our next generation wind turbine technology. The SSE and Siemens team has worked extremely hard to get to this point and should feel proud of their achievement in delivering this important clean energy project.”

Ian Flannagan, SSE’s Project Construction Manager, said:

“It’s great to see the Siemens wind turbine generating electricity for the first time which is testament to the hard work and commitment shown by everyone involved in the project.

“We are busy preparing the site ahead of the second turbine, a Mitsubishi SeaAngel 7MW offshore wind model, arriving in a few months time.”

UK Energy and Climate Minister, Greg Barker said:

“SSE Renewable’s test site for offshore wind turbines is an exciting and innovative project. It will help the country take another step towards delivering £110 billion investment into our energy sector while helping to support local jobs.”

The success of the offshore turbine testing site is good news for the UK’s wind industry ensuring that it’s world leading position is maintained.

The report published by the EWEA serves to underline the many benefits which wind energy generation has; increasing both energy and water security, reducing CO2 emissions and combating climate change and helping to keep energy bills down by reducing reliance upon fossil fuel imports. We at Intelligent Land Investments (Renewable Energy) are proud to be doing our part to increase the UK’s wind energy generation capacity.

Shale Gas and the European Union: Legislation Needed

There seems to be a growing consensus about Shale Gas in Europe. Following the ban of the fracking process in France and the suspension of exploratory drilling in England after increased seismic activity, Brussels is beginning to react. Increasing awareness of the problems that seem to be caused by fracking; water pollution and contamination, seismic instability, methane leakage and excessive use of ground water, is resulting in the development of political resistance to the fledgling fuel.

Jo Leinen, described by the Guardian as “one of the most influential members of the European Parliament, wants a new “energy quality directive” within Europe that would mean that fuels, such as Shale Gas,  which are deemed to adversely impact upon the environment would be regulated heavily. Leinen is the chair of the EU committee on the environment, public health and food safety and as such has the power to introduce proposals for such regulation. He feels that there would likely be support for legislative intervention because a number of MEPs are becoming increasingly worried about shale gas. He stated that “We need to be looking much more carefully at shale gas, and at the consequences of pursuing it”. Regulation could take the form of limits or financial penalties on the use or extraction of shale gas.

The International Energy Agency recently released a report on shale gas which came to the conclusion that it was not a “panacea” for the worlds changing energy needs. Shale gas if used as the worlds main energy source would result in climate change going past the 2C mark regarded as the limit of safety. Beyond this point climate change is considered to become both catastrophic and irreversible.

However, any attempts to introduce legislative limitations on shale gas can expect to meet fierce resistance from the gas industry. Shale gas has been pushed hard as a ‘green’ energy source, particularly as it is cheaper to produce than most renewable energy sources. However, the carbon footprint of shale gas production has been repeatedly questioned as the figures released by the gas industry do not take into account the problem of methane leakage. Methane is considered to be the worst greenhouse gas because it is twenty times more damaging to the atmosphere than carbon dioxide. Some have estimated that 4-8% of the methane produced by shale gas production enters into the atmosphere through leaking and venting.

Shale gas can be extremely damaging to the environment and to the renewable energy sector. Action must be taken.